# **250 Electromagnetism Multiple Choice Questions**

# **Compiled by Yasir Gul**

This document contains 250 Electromagnetism MCQs (basic to advanced) with four options, correct answers, and concise explanations.

#### Q1. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q2. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q3. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q4. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

**Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q5. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

#### Q6. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q7. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q8. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Explanation: A coil opposes change in current due to self-induced emf.

## Q9. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

# Q10. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

#### Q11. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q12. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

# Q13. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

#### Q14. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q15. Displacement current concept was introduced by:

A) Faraday

- B) Maxwell
- C) Ampere
- D) Tesla

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q16. The SI unit of electric field is:

A) V

- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q17. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q18. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

**Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q19. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

# Q20. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

**Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q21. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q22. The unit of capacitance is:

- A) Ohm
- B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q23. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q24. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q25. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q26. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q27. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q28. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

## Q29. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

#### Q30. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q31. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q32. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

## Q33. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

#### Q34. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q35. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q36. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q37. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

## Q38. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q39. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q40. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

# Q41. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf  $\propto$  rate of change of magnetic flux.

## Q42. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

# Q43. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q44. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

# Q45. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q46. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q47. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q48. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q49. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

## Q50. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf  $\propto$  rate of change of magnetic flux.



## Q51. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q52. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q53. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q54. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q55. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

#### Q56. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q57. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

# Q58. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q59. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q60. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q61. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q62. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q63. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q64. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

## Q65. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q66. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q67. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q68. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q69. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

# Q70. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q71. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

#### Q72. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q73. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q74. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q75. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q76. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q77. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q78. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q79. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q80. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q81. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q82. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q83. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q84. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current

Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q85. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current

Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

## Q86. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

Explanation: Coulomb's law applies to stationary point charges.

## Q87. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

# Q88. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q89. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q90. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf  $\propto$  rate of change of magnetic flux.

## Q91. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q92. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

#### Q93. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q94. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q95. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q96. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q97. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q98. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q99. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

# Q100. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

| Compiled by Yasir Gul   Page 17 |  |
|---------------------------------|--|

#### Q101. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q102. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q103. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

# Q104. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q105. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q106. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q107. Displacement current concept was introduced by:

- A) Faradav
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

# Q108. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

#### Q109. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q110. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q111. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

# Q112. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q113. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q114. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q115. Self-inductance is a property of:

A) Capacitor

- B) Coil
- C) Resistor
- D) Battery

Explanation: A coil opposes change in current due to self-induced emf.

## Q116. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q117. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q118. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q119. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

# Q120. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

**Correct Answer:** B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q121. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q122. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law

C) Ampere's law

D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q123. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

#### Q124. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q125. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q126. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q127. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q128. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q129. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q130. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q131. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q132. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q133. Displacement current concept was introduced by:

A) Faraday

- B) Maxwell
- C) Ampere
- D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q134. Which law explains the direction of induced current?

A) Faraday's law

- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

#### Q135. Displacement current concept was introduced by:

A) Faraday

- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q136. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

Explanation: Induced emf ∞ rate of change of magnetic flux.

## Q137. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

**Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q138. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q139. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q140. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q141. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

**Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q142. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

#### Q143. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q144. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

# Q145. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

**Correct Answer:** B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

#### Q146. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q147. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q148. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q149. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q150. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q151. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q152. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q153. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q154. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q155. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

#### Q156. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement

**Correct Answer:** B Explanation: Right-hand rule determines direction of force on moving charge.

## Q157. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q158. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Explanation: A coil opposes change in current due to self-induced emf.

## Q159. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q160. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q161. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q162. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

#### Q163. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∞ rate of change of magnetic flux.

#### Q164. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

#### Q165. Faraday's law of induction relates:

A) Voltage and resistance

- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q166. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q167. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q168. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q169. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q170. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

# Q171. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q172. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law

C) Ampere's law
D) Ohm's law
Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q173. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q174. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q175. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q176. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q177. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q178. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q179. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry

D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q180. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q181. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q182. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q183. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q184. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

Correct Answer: B

Explanation: Magnetic field lines form concentric circles around wire.

#### Q185. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q186. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q187. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q188. Magnetic flux through a surface is measured in:

A) Tesla

B) Weber

C) Henry

D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q189. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q190. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q191. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf  $\propto$  rate of change of magnetic flux.

## Q192. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q193. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement

**Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q194. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

#### Q195. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q196. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

**Correct Answer:** B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q197. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q198. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Correct Answer: B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q199. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q200. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q201. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement **Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q202. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

#### Q203. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q204. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q205. Displacement current concept was introduced by:

- A) Faraday
- B) Maxwell
- C) Ampere
- D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q206. Coulomb's law gives the force between two:

- A) Moving charges
- B) Stationary charges
- C) Magnets
- D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q207. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

# Q208. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q209. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement **Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q210. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q211. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

#### Q212. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q213. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q214. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

## Q215. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q216. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q217. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

**Correct Answer:** B

Explanation: Coulomb's law applies to stationary point charges.

## Q218. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

#### Q219. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

**Correct Answer:** B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q220. The SI unit of electric field is:

A) V

B) V/m

C) N

D) C/m<sup>2</sup>

**Correct Answer:** B

Explanation: Electric field E = Force/Charge = N/C = V/m.

#### Q221. Magnetic flux through a surface is measured in:

A) Tesla

B) Weber

C) Henry

D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

#### Q222. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

## Q223. Displacement current concept was introduced by:

A) Faraday

B) Maxwell

C) Ampere

D) Tesla

Correct Answer: B

Explanation: Maxwell introduced displacement current to complete Ampere's law.

#### Q224. Coulomb's law gives the force between two:

A) Moving charges

B) Stationary charges

C) Magnets

D) Currents

Correct Answer: B

Explanation: Coulomb's law applies to stationary point charges.

## Q225. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q226. Right-hand rule gives the direction of:

A) Electric field

B) Magnetic force

C) Current

D) Displacement

**Correct Answer:** B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q227. Magnetic field due to long straight current-carrying wire:

A) Parallel to wire

B) Circular around wire

C) Perpendicular to current

D) Along current **Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

## Q228. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q229. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q230. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

## Q231. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

Correct Answer: B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q232. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q233. The unit of capacitance is:

A) Ohm

B) Farad

C) Coulomb

D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q234. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

#### Q235. Self-inductance is a property of:

A) Capacitor

B) Coil

C) Resistor

D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

# Q236. Which law explains the direction of induced current?

A) Faraday's law

B) Lenz's law

C) Ampere's law

D) Ohm's law

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q237. Faraday's law of induction relates:

A) Voltage and resistance

B) Induced emf and rate of change of flux

C) Magnetic field and distance

D) Current and time Correct Answer: B

Explanation: Induced emf ∝ rate of change of magnetic flux.

# Q238. Right-hand rule gives the direction of:

A) Electric field

- B) Magnetic force
- C) Current
- D) Displacement Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

## Q239. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

Correct Answer: B

Explanation: A coil opposes change in current due to self-induced emf.

#### Q240. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

## Q241. Self-inductance is a property of:

- A) Capacitor
- B) Coil
- C) Resistor
- D) Battery

**Correct Answer:** B

Explanation: A coil opposes change in current due to self-induced emf.

# Q242. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q243. Which law explains the direction of induced current?

- A) Faraday's law
- B) Lenz's law
- C) Ampere's law
- D) Ohm's law

**Correct Answer:** B

Explanation: Lenz's law gives the direction opposing the cause of induction.

## Q244. Right-hand rule gives the direction of:

- A) Electric field
- B) Magnetic force
- C) Current
- D) Displacement

Correct Answer: B

Explanation: Right-hand rule determines direction of force on moving charge.

# Q245. Magnetic flux through a surface is measured in:

- A) Tesla
- B) Weber
- C) Henry
- D) Volt

Correct Answer: B

Explanation: Magnetic flux  $\phi = B \cdot A$ , measured in Webers (Wb).

## Q246. The unit of capacitance is:

- A) Ohm
- B) Farad
- C) Coulomb
- D) Weber

**Correct Answer:** B

Explanation: Capacitance (C) = Q/V, unit is Farad (F).

#### Q247. Faraday's law of induction relates:

- A) Voltage and resistance
- B) Induced emf and rate of change of flux
- C) Magnetic field and distance
- D) Current and time

**Correct Answer:** B

Explanation: Induced emf ∝ rate of change of magnetic flux.

## Q248. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q249. The SI unit of electric field is:

- A) V
- B) V/m
- C) N
- D) C/m<sup>2</sup>

Correct Answer: B

Explanation: Electric field E = Force/Charge = N/C = V/m.

## Q250. Magnetic field due to long straight current-carrying wire:

- A) Parallel to wire
- B) Circular around wire
- C) Perpendicular to current
- D) Along current

**Correct Answer:** B

Explanation: Magnetic field lines form concentric circles around wire.

| Compiled by Yasir Gul   Page 41 |
|---------------------------------|
| Complied by Lasii Gui   Lage 41 |